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Abstract—Joint analysis of medical data collected from differ-
ent imaging modalities has become a common clinical practice.
Therefore, image fusion techniques, which provide an efficient
way in combining and enhancing information, has drawn in-
creasing attention from the medical community. In this paper,
we propose a novel cross-scale fusion rule for multiscale de-
composition (MSD)-based fusion of volumetric medical images
taking into account both intra- and inter-scale consistencies.
Instead of employing computationally expensive MSD schemes
to improve fusion results, our cross-scale fusion rule determines
an optimal set of coefficients from the multiscale representations
of the source images by effective exploitation of neighborhood
information. An efficient color fusion scheme is also proposed.
Experiments demonstrate that our fusion rule generates better
results than existing rules.

Index Terms—Medical image fusion, 3D image fusion, fusion
rule, multiscale analysis.

I. INTRODUCTION

MEDICAL imaging has become a vital component in
routine clinical applications, such as diagnosis and

treatment planning [1]. However, because each imaging
modality only provides information in a limited domain, many
studies require joint analysis of imaging data collected from
the same patient using different modalities [2]. For instance,
T1-weighted (T1W) and T2-weighted (T2W) magnetic reso-
nance imaging (MRI) brain scans were analyzed together to
guide neurosurgical resection of epileptogenic lesions [3] or to
identify thalamic nuclei [4]; MRI and computed tomography
(CT) images were analyzed together to judge the quality of
a prostate seed implant [5]; and MRI and poitron emission
tomography scans were analyzed together to diagnose in-
tracranial tumors [6]. This requirement of joint analysis of
multi-modal imaging data led to the introduction of image
fusion techniques into the medical field and the development of
medical data-oriented fusion techniques (e.g., [7], [8]). Given
a set of source images, image fusion not only provides a single
fused image with more accurate and reliable information than
any individual source image, but may also enable features
to be more distinguishable in the fused image [9]. Such an
enhanced image facilitates visual perception or further image
processing tasks [10], [11]. Due to its compact and enhanced
representation of information, image fusion has been employed
in many medical applications, such as tumor detection and
diagnosis, neurosurgical monitoring and planning [12], and
quality enhancement of four-dimensional (4D) fetal cardiac
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Fig. 1. Overlaying monochrome images using different color channels.
The overlaying schemes transfer information from both T1W and T2W MRI
images into a single image at the cost of reduced image contrast. (a) T1W
MRI image; (b) T2W MRI image; (c) Overlaid image using the red channel
for T1 and the green channel for T2; (d) Overlaid image using the red and
green channels for T1 and the blue channel for T2.

ultrasound imaging [8]. Even if image fusion is not performed
explicitly, e.g., by a computer program, it is common practice
for radiologists to utilize complementary information obtained
by different imaging modalities [1], [2], [13], and the fusion
of information from multi-modality medical images is usually
performed subconsciously by radiologists to compare images
and better identify abnormality [13].

In some medical practice, image fusion is achieved by over-
laying co-registered images acquired from different modal-
ities [14] or overlaying regions of interest (ROIs) or fea-
tures extracted from one modality with images captured from
another [3]. Normally, the co-registered source images or
ROIs are overlaid by manipulating their transparency attributes
(if a source image contains color information) [13] or as-
signing them to different color planes (if the sources are
monochrome/grayscale images) [15]. This practice is consid-
ered as a fundamental approach in color fusion, where the
use of color expands the amount of information that can
be conveyed in a single image [16]. While such overlaying
schemes aim to transfer information visually from multiple
sources to a single displayed image (not physically blending
the pixel values to form a new image), they do not necessarily
enhance the image contrast or make image features more
distinguishable. An example is given in Figure 1, where the
overlaying schemes transfer information from both T1W and
T2W MRI scans into a single image at the cost of reduced
image contrast (compare the regions indicated by the white
circles between the overlaid images and the original images).
In our study, we treat image fusion as the process of physically
blending the pixel values stored in the source images, which
is a common interpretation in the image fusion community
for monochrome image fusion [10], [16]. In addition, we also
show how color fusion can benefit from the monochrome
fusion results.
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Fig. 2. General procedure of MSD-based image fusion in a 2D case.

According to whether multiscale decomposition (MSD)
(e.g., pyramid transform) is used, fusion methods can be clas-
sified into two categories: MSD-based and non-MSD based.
Compared to the latter, MSD-based methods have the advan-
tage of extracting and combining salient features at different
scales, and therefore normally produce images with greater
information content [16]. The general procedure of MSD-
based fusion in a 2D case is illustrated in Figure 2. First, the
source images are transformed to multiscale representations
(MSRs) using MSD. An MSR is a pyramidal structure with
successively reduced spatial resolution; and it usually has one
approximation level storing low-pass coefficients and several
detail levels storing high-pass or band-pass coefficients. Then,
a certain fusion rule is applied to merge coefficients at different
scales. Finally, an inverse MSD (IMSD) is applied to the fused
MSR to generate the final image.

According to [9], [16]–[18], image fusion can be performed
at three different levels: pixel/data level, feature/attribute level,
and symbol/decision level. Pixel-level fusion determines a
pixel in the fused image from a set of pixels in the source
images. Feature-level fusion applies the extracted image fea-
tures (e.g., segmented objects or edge maps) to guide the
pixel merging process or form a joint feature vector. Symbol-
level fusion combines abstract representations of the source
images extracted using techniques like classification. Among
these three levels, pixel-level fusion and feature-level fusion
are more closely related when both output a single fused
image, while the output of symbol-level fusion is always a
certain decision. Pixel-level fusion directly uses the original
information in the source images and is computationally
efficient, but it is more sensitive to image noise compared
to feature-level fusion [18]. However, the fusion quality of
feature-level methods largely depends on the performance of
the employed feature extraction technique. In practice, a fusion
task may also involve more than one level simultaneously [17],
[18].

In this paper, we propose a novel cross-scale (CS) fu-
sion rule for MSD-based image fusion, where the belong-
ingness/membership of each fused coefficient to each source
image is calculated. Although here we focus on pixel-level
fusion, this proposed fusion rule can be extended to feature-
level or symbol-level fusion as well. Unlike previous methods,
our fusion rule calculates an optimal set of coefficients for
each scale taking into account large neighborhood information,
which guarantees intra- and inter-scale consistencies. The
effectiveness of this new fusion rule is validated through

experiments on 3D medical image fusion. Although it is
possible to treat 3D images/volumes as stacks of 2D slices
and fuse corresponding slices using 2D fusion methods, the
results do not have qualities comparable to 3D fusion due to
lack of between-slice information in the fusion process [19].
Therefore, in our method, we apply MSD and our CS rule
directly to the 3D volumes. An effective color fusion scheme
utilizing the monochrome fusion results is also proposed.

The rest of the paper is organized as follows. Section II
reviews previous methods. Section III explains our cross-scale
fusion rule and our color fusion scheme in detail. Section IV
discusses experimental results, along with comparison with
existing fusion rules. Finally, Section V gives the conclusion
and future work.

II. RELATED WORK

This section focuses on reviewing key MSD-based im-
age fusion techniques. For applications of image fusion in
medicine and other fields, please refer to the overview articles
by Pattichis et al. [12] and by Hall and Llinas [20].

A. Multiscale Decomposition

The pyramid transform (PT) and the wavelet transform
(WT) are the two categories of MSD schemes that are most
commonly employed in image fusion. Among different PT
schemes, the Laplacian pyramid transform (LPT) [21], [22] is
one of the most frequently used in image fusion. A Lapla-
cian pyramid (LP) is constructed based on its corresponding
Gaussian pyramid by subtracting two adjacent levels. Thus, a
detail level in the LP encodes the local variations at that scale.
The ratio of low-pass pyramid (RoLP) [23] is also constructed
based on the Gaussian pyramid, but by taking the ratio of
two adjacent levels. When an RoLP is used in subsequent
calculations, the local contrast (i.e., local luminance variation
with respect to the background [24]) at each coefficient
location in the RoLP is derived from the ratio. The gradient
pyramid (either explicitly [25] or implicitly [26] constructed)
is another type of PT, which is built by applying gradient filters
of different orientations to each level of a Gaussian pyramid.

Other than PT, WT introduced by Mallat [27] has also
been successfully applied to image fusion (e.g., [28], [29]).
A standard WT technique is the discrete WT (DWT) [27],
which decomposes a signal into an MSR using scaling (low-
pass filtering) and wavelet (high-pass filtering) functions. One
drawback of DWT is shift-variance, which tends to cause
artifacts along edges in the fused images [29], [30]. To solve
this problem in DWT-based fusion, WT schemes that provide
shift-invariance, such as redundant DWT [31] and dual-tree
complex WT (DT-CWT) [32], were also employed in image
fusion. Please refer to [30] for detailed discussions on the
performance of different MSD schemes in some representative
fusion tasks. Instead of employing sophisticated MSD schemes
to improve the fusion stability, which usually dramatically
increase the computational cost, here we focus on the other
direction to provide stable fusion results, i.e., utilizing more
effective fusion rules.
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Although theoretically the decomposition of an image can
be performed iteratively until there is only one pixel in each
dimension at the approximation level, this will result in serious
bias and inaccuracy in the feature selection at low-resolution
levels, which impairs the fusion quality [26]. Therefore, typ-
ically only a few decomposition levels are used in practice,
and some analyses on the number of decomposition levels for
different MSD schemes in some fusion tasks were conducted
in [30], [33].

B. Fusion Rules

Other than the MSD scheme, the other key factor affecting
the fusion results is the fusion rule. According to [9], [11], a
fusion rule is the processing that determines the formation
of the fused MSR from the MSRs of the source images,
and it consists of four key components, i.e., activity-level
measurement, coefficient grouping, coefficient combining, and
consistency verification. In this section, we give a brief review
of some representative schemes in these four steps. Please refer
to [9], [11], [33] for more detailed discussions.

1) Activity-Level Measurement: The activity-level measure-
ment reflects the salience of each coefficient in an MSR [30],
and it can be categorized into three classes, i.e., coefficient-
based activity (CBA), window-based activity (WBA), and
region-based activity (RBA) [9], [11]. A CBA measure evalu-
ates each coefficient independently and normally describes the
activity level of a coefficient using its absolute value. A WBA
measure uses the information within a window to evaluate
the coefficient at the window center. A popular choice is the
rank filter-based WBA, where the maximum value within a
window is normally selected as in [28]. More sophisticated
WBA measures also exist in the literature, such as image
statistics-based WBA [33]. The concept of RBA is similar to
WBA except that irregular-shaped regions are used instead of
regular-shaped windows. RBA is one way to achieve feature-
level fusion, which requires segmentation on (the MSRs of)
the source images [18], [34]. In our CS rule, the activity-level
measure is used to determine the salience at each coefficient
and there is no restriction on the type of measures to be
employed. The focus of our CS rule is to provide a unified
framework of the other three key components in a fusion rule,
which are usually treated separately in previous methods.

2) Coefficient Grouping: The coefficient grouping schemes
can be roughly divided into three categories, i.e., no grouping
(NG), single-scale grouping (SG), and multiscale grouping
(MG) [9], [11]. NG means that each coefficient is fused
independently; SG means that corresponding coefficients be-
tween different subbands at the same decomposition level
are fused in the same way; and MG is more restrictive than
SG by also requiring that corresponding coefficients between
different scales take the same fusion decision. For some types
of PT, e.g., LPT and RoLP, where only one subband is present
at each decomposition level, NG and SG are equivalent. A
cross-band SG (CBSG) scheme was proposed in [35], where
the same fusion decision for every set of corresponding detail
coefficients at the current scale is made based on the sum of
the activity levels of them and their corresponding coefficients

at a higher scale. An MG scheme was proposed in [36], where
the fusion decision for every set of corresponding coefficients
across all scales in an MSR is made based on the weighted
average of their activity levels. Our CS rule performs similar
to MG, but does not impose such a hard constraint on the
fusion decision. Instead, the influence on each coefficient from
their corresponding coefficients at adjacent scales is reflected
in the membership calculation, and the fusion decision of a
coefficient is determined based on its calculated membership.
Please refer to Section III for a detailed description on the
membership calculation.

3) Coefficient Combining: One common coefficient com-
bining scheme for the detail levels is the choose-max (CM)
combining scheme, i.e., selecting the coefficient with the
highest activity level at each location from the MSRs of the
source images as the coefficient at that location in the MSR
of the fused image [9]. A common combining scheme for
the approximation level is taking average (AVG). Another
popular scheme for the approximation level is the weighted
average (WA) combining scheme proposed in [25]. A lin-
ear weighting function is applied when the local correlation
between corresponding coefficients in a neighborhood in the
MSRs of the source images is above a threshold. Some
more complicated combining schemes were also proposed by
previous researchers, and please refer to [33] for more detailed
discussions. Our CS rule does not apply combining schemes
directly based on coefficient activity levels, but combines
coefficients based on their memberships, which results in a
more effective combining scheme utilizing inter- and intra-
scale information.

4) Consistency Verification: The consistency verification
schemes ensure neighboring coefficients are fused in a similar
manner [9]. A majority filter was used in [28] to apply
window-based verification (WBV) at each individual scale. A
cross-band verification (CBV) scheme was proposed in [35],
where the detail coefficients at the current level of the fused
MSR are recalculated if their corresponding coefficients at a
lower level come from the MSR of a different source image.
CBV was designed to comply with CBSG. It is also possible
that no verification (NV) is applied. Our CS rule does not
perform explicit verification, but embeds verification in the
coefficient membership calculation process.

C. Medical Image Fusion

The overlaying schemes were discussed in Section I and
here we focus on the discussion of fusion techniques that
physically blend pixel values in medical images. Please note
that the MSD-based fusion methods discussed in the previous
sections can be directly applied to multi-dimensional medical
image fusion, such as the DWT+CBA+NG+AVG+CM+NV
method used in [37] for quality enhancement of real-time 3D
echocardiography. In this section, we discuss some activity-
level measures proposed by previous researchers for medical
image fusion and some non-MSD based methods. A multi-
channel pulse coupled neural network was proposed in [38]
for 2D medical image fusion. However, the fusion results
suffer from loss of local contrast, which makes details less
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distinguishable. DWT was applied to fuse 2D medical images
in [39], where a visibility-based WBA and a local variance-
based WBA were proposed for the approximation level and the
detail levels, respectively. NG, CM for both the approximation
and detail levels, and WBV were employed. However, no
experiment specifically designed to prove the advantages of
their proposed WBA measures compared to other activity-
level measures was conducted. In contrast, all fusion rules
were compared under the same setting in our experiments,
i.e., using the same MSD scheme and activity-level measure.

In [19], 3D shunting neural network was applied for infor-
mation decorrelation between source images and the shunted
images were then assigned to different color planes for color
fusion of 3D medical images. In our method, a more efficient
scheme is proposed, where color fusion is achieved as a natural
extension to monochrome fusion. In addition, our method is
developed based on the color opponency theory [40], which
maximizes color contrast. A multi-band contrast field defined
on image gradients was proposed in [41] and the fused
3D medical image was obtained by minimizing a quadratic
objective function defined using the contrast field. Please note
that the contrast definition used in [41] is different from classic
definitions [23], [24], where contrast is defined as luminance
variation with respect to background luminance. As mentioned
in [41], their method tends to cause artifacts in smooth image
regions due to the form of the objective function. Such artifacts
are less likely to appear in our method, because the fused voxel
values are closely related to the source voxel values and both
intra- and inter-scale consistencies are imposed. In addition,
our focus here is a novel fusion rule other than a specific
activity-level measure (e.g., contrast) and different measures
can be easily incorporated into our fusion rule.

III. METHOD

A. Problem Formulation

The source images are assumed to be spatially registered,
which is a common assumption in image fusion [9]–[11].
Various techniques can be applied to medical image regis-
tration. Please refer to the excellent surveys by Maintz and
Viergever [1] and by Shams et al. [42] for more details.
Let cnk,d,i and c̄nd,i denote the i-th coefficients in the d-th
subband at the n-th detail level of the MSR of the k-th source
image and the fused image, respectively, where n ∈ [1, N ].
Let ak,d,i and ād,i denote the i-th coefficients in the d-th
subband at the approximation level of the MSR of the k-th
source image and the fused image, respectively. We assume
a subband at the approximation level has the same size as a
subband at the N -th detail level. For PT schemes where the
approximation level is at a higher level, applying an extra
step of band-pass filtering can fulfill this assumption. Let
M : {c̄nd,i, ād,i} × {cnk,d,i, ak,d,i} → [0, 1] be a function repre-
senting the (partial) membership of c̄nd,i (or ād,i) to the MSR of
the k-th source image, i.e., the proportion of the contribution
from cnk,d,i (or ak,d,i) to c̄nd,i (or ād,i) among all corresponding
coefficients {cnk,d,i|k = 1, . . . ,K} (or {ak,d,i|k = 1, . . . ,K}).
The memberships can be determined based on local and/or
global information in the MSRs. To simplify notation, let

Mn
k,d,i and Mk,d,i denote the coefficient memberships at the

n-th detail level and the approximation level, respectively. We
have

∑
kM

n
k,d,i = 1 and

∑
kMk,d,i = 1.

For each subband of a detail level, where the corresponding
coefficients among different MSRs are usually quite distinct
from each other, a fused coefficient can be determined as the
one with the highest membership:

c̄nd,i = arg maxcnk,d,i,k:1...K Mn
k,d,i. (1)

For the approximation level, where the corresponding coef-
ficients usually exhibit less diversity compared to those at
a detail level, a fused coefficient can be determined as a
weighted average of all its corresponding coefficients based
on their memberships:

ād,i =

K∑
k=1

Mk,d,iak,d,i. (2)

B. Cross-Scale Coefficient Selection

The proposed cross-scale fusion rule aims to pass in-
formation within and between each decomposition level so
that the fused image preserves most details from the source
images while exhibiting minimal artifacts. The basic steps are:
1) Pass salient information from a lower level to a higher
level in an MSR until the approximation level is reached; 2)
Calculate the memberships of each fused coefficient at the
approximation level using the passed salient information; 3)
Use these memberships to guide the coefficient selection at
the detail levels.

Let Ank,d,i denote the activity level of cnk,d,i. In order to im-
pose inter-scale consistency, the activity levels of coefficients
at a lower decomposition level are passed to a higher level as
follows:

Ãnk,d,i =

{
erf(Ank,d,i), n = 1;
max(erf(Ank,d,i), [Ã

n−1
k,d ]↓2i ), n ∈ [2, N ].

(3)

where Ãn
k,d denotes the vector containing all Ãnk,d,i’s in the d-

th subband of the MSR of the k-th source image; [·]↓2 denotes
downsampling by a factor of 2 in each dimension; and the
subscript [·]i denotes the i-th coefficient. erf : R → [−1, 1]
is called the Gauss error function, a sigmoid-shaped function.
The magnitudes of activity levels of the coefficients across
different detail levels can vary significantly, which makes it
difficult to compare the relative importance of salient informa-
tion across scales. This nonlinear function erf(·) compresses
the activity levels into the same range [0, 1], which gives a
more reasonable comparison of salient information.

At the approximation level, the passed salient information
ÃNk,d,i’s and the approximation coefficients ak,d,i’s are used
together to calculate the memberships Md,i,k’s. One simple
scheme is to directly take normalized ÃNk,d,i’s as Md,i,k’s.
However, this scheme does not utilize the visual informa-
tion embedded in ak,d,i’s, which is crucial for producing
locally smoothed solutions. The generalized random walks
(GRW) proposed in [43] has demonstrated good performance
in imposing intra-scale consistency while preserving local
details in multi-exposure fusion. Therefore, here we employ
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Algorithm 1 Basic steps of the LPT+CS fusion scheme.
1: Apply N -level LPT to each source image
2: Apply band-pass filtering to the approximation levels
3: Compute Ãnk,1,i’s for detail level 1 to N using Equation (3)
4: Compute Mk,1,i’s at the approximation level using Equa-

tions (4) to (6)
5: Compute Mn

k,1,i’s for detail level N to 1 using Equa-
tion (7)

6: Select coefficients for the approximation level of the fused
MSR using Equation (2)

7: Select coefficients for the detail levels of the fused MSR
using Equation (1)

8: Apply inverse LPT to the fused MSR

GRW to calculate Md,i,k’s, which we consider as the steady-
state transition probabilities in the random walks context, by
minimizing K similarly-defined energy functions. Let Mk,d

denote the vector containing all Md,i,k’s, i.e., memberships of
all the approximation coefficients in the d-th subband of the
fused MSR to the k-th source image. The solution to the k-th
energy function is given by:

LdMk,d = ÃN
k,d. (4)

The matrix Ld is called the Laplacian matrix, which encodes
the interactions between adjacent coefficients. The entry in the
i-th row and j-th column is defined as:

Ld,ij =


∑
ād,s∈Nd,i

Wd,is +
∑
k Ã

N
k,d,i, i = j;

−Wd,ij , ād,j ∈ Nd,i
0, otherwise.

(5)
where Nd,i is the first-order neighborhood of ād,i. Wd,ij

represents the expected similarity between ād,i and ād,j based
on the observed approximation coefficients in the MSRs of the
source images. Wd,ij is defined as follows:

Wd,ij = γ
K∏
k=1

exp(
‖ak,d,i − ak,d,j‖

σ
), (6)

where γ and σ are weighting factors. Please refer to [43] for
more details on GRW.

Once Md,i,k’s are calculated, they are passed down to guide
the membership calculation at each detail level:

Mn
k,d,i =

{
Md,i,k, n = N ;
1
α [φ ∗ (Ãn

k,d � [Mn+1
k,d ]↑2)]i, n ∈ [1, N − 1].

(7)
where α is a normalization factor rendering

∑
kM

n
k,d,i = 1;

[·]↑2 denotes upsampling by a factor of 2 in each dimension
followed by interpolation; ∗ denotes convolution; � denotes
component-wise multiplication; and φ is a low-pass filter
that helps to achieve intra-scale consistency. In our current
implementation, φ is taken as a 5× 5× 5 Gaussian filter for
a volume. In the following, we give two specific examples on
applying our CS rule with two popular MSD schemes, LPT
and DWT. However, the concept may be extended to other
MSD schemes as well, such as RoLP and DT-CWT.

Algorithm 2 Basic steps of the DWT+CS fusion scheme.
1: Apply N -level DWT to each source image
2: Compute Ãnk,1,i’s for detail level 1 to N using Equa-

tions (8) and (3)
3: Compute Mk,1,i’s at the approximation level using Equa-

tions (4) to (6)
4: Compute Mn

k,1,i’s for detail level N to 1 using Equa-
tion (7)

5: Assign Mn
k,1,i’s to their corresponding Mn

k,d,i’s
6: Select coefficients for the approximation level of the fused

MSR using Equation (2)
7: Select coefficients for the detail levels of the fused MSR

using Equation (1)
8: Apply inverse DWT to the fused MSR

1) LPT+CS Based Fusion: In order to combine our CS
rule with LPT, an extra step of band-pass filtering at the
approximation level is needed to produce a corresponding
detail level. This detail level is only used in the coefficient
membership calculation but not involved in IMSD. Please
note that there is only one subband at each decomposition
level for LPT. The whole process of LPT+CS based fusion is
summarized in Algorithm 1.

2) DWT+CS Based Fusion: Although it is possible to apply
the same scheme for LPT-based fusion to DWT-based fusion,
each detail level for DWT contains 2D − 1 subbands (D is
the number of dimensions of the signal), which will result
in significantly increased computational cost and poor consis-
tency among subbands. Therefore, corresponding coefficients
in different subbands at the same scale are evaluated together
and the same membership is assigned to all of them. Hence,
Ank,d,i used in Equation (3) is substituted with the following:

Ânk,d,i = max(Ank,1,i, . . . , A
n
k,2D−1,i). (8)

The whole process of DWT+CS based fusion is summarized
in Algorithm 2.

C. Color Fusion

In this section, we introduce an efficient color fusion scheme
for the case of two monochrome source images utilizing the
fusion result from the previous section. This color fusion
scheme is inspired by the color opponency theory in physi-
ology [40], which states that human perception of achromatic
and chromatic colors occurs in three independent dimensions,
i.e., black-white (luminance), red-green, and yellow-blue. Con-
trast sensitivity in these three dimensions were studied by
many researchers [44]–[46]. The contrast sensitivity function
of luminance shows band-pass characteristics, while the con-
trast sensitivity functions of both red-green and yellow-blue
show low-pass behavior. Therefore, luminance sensitivity is
normally higher than chromatic sensitivity except at low spa-
tial frequencies. Hence, the fused monochrome image, which
provides combined information and good contrasts, should
be assigned to the luminance channel to exploit luminance
contrast. In addition, the color-fused image should also provide
good contrasts in the red-green and yellow-blue channels in



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. X, NO. X, XXX 2012 6

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Comparison between our color fusion scheme and the overlaying scheme. The first row shows a slice in the axial direction from each volume. The
second row shows slices in the coronal direction. Our scheme provides more image contrast, which makes the combined details more distinguishable, such
as those indicated by the arrows in the insets. (a) T1W MRI slices; (b) T2W MRI slices; (c) Our color fusion results with Īcr = I1, Īcb = I2; (d) Overlaid
images with Īcr = I1, Īcg = I2; (e) Overlaid images with Īcr = I2, Īcg = I1; (f) Our color fusion results with Īcr = I2, Īcb = I1; (g) Overlaid images with
Īcr = Īcg = I1, Īcb = I2; (h) Overlaid images with Īcr = Īcg = I2, Īcb = I1.

order to fully exploit human color perception. To achieve this,
we can consider red, green, yellow, and blue are arranged
on a color circle as in [40], where the red-green axis is
orthogonal to the yellow-blue axis and color (actually its hue)
transits smoothly from one to another in each quadrant. Then,
in order to maximize color contrast/dissimilarity between an
object and its surroundings in the color-fused image, their hues
should come from two opposite quadrants or at least from two
orthogonal hues on the color circle. With these considerations,
we have developed the following scheme.

Let I1 and I2 denote the two source images and Ī the
monochrome fused image. Ī is considered as the luminance
image of the color-fused image Īc. Therefore, if we consider
the YUV color space, Ī is the Y component. Let Īcr, Īcg ,
and Īcb denote the red, green, and blue color planes of Īc,
respectively. The source images are assigned to the red and
blue planes in the RGB color space (i.e., Īcr = I1, Ī

c
b = I2 or

Īcr = I2, Ī
c
b = I1), and the green plane is derived by reversing

the calculation of the Y component from the RGB color space:

Īcg = (Ī− 0.299Īcr − 0.114Īcb)/0.587. (9)

This scheme provides more contrast enhancement than the
overlaying schemes, because it fully utilizes color opponency
in human perception. A visual comparison of slices from two
directions is provided in Figure 3. An inset is given below
each slice, which clearly shows the improved contrast using
our scheme, as indicated by the white arrows.

IV. EXPERIMENTAL RESULTS

The performance of the proposed cross-scale fusion rule
was evaluated on volumetric image fusion of T1W and T2W
MRI scans using both synthetic (Section IV-B) and real data
(Section IV-C). There are three basic types of structural MRI:

T1W, T2W, and proton density-weighted (PDW). Here, we
only consider the fusion of T1W and T2W scans, because this
combination produces more informative fusion result than the
other two combinations (i.e., T1W+PDW and T2W+PDW) as
shown in [47].

In our experiments, only CBA was employed as the activity-
level measurement. This is because: 1) As evaluated in [33],
CBA is one of the measures that give the best performance;
2) Our CS rule has no restriction on the activity level and
employing the same activity-level measure in all methods gives
a fair comparison between our CS rule and existing fusion
rules. To compare the performance of our CS rule with existing
rules, three grouping schemes were considered: NG, CBSG,
and MG; two combining schemes for the approximation level
(APX) were considered: AVG and WA; one combining scheme
for the detail levels (DET) is considered: CM; three verifica-
tion schemes were considered: NV, WBV, and CBV. Please
note that only CM can be used for the approximation level
when MG is used due to the nature of MG and that CBV
can only be used with CBSG due to the nature of CBSG. For
WA and WBV, we took a 5 × 5 × 5 neighborhood/window.
We used the suggested threshold value of 0.85 in WA [25].
The two suggested threshold values of 0.2 and 0.5 in [28]
were used in CBV. Two MSD schemes were considered: LPT
and DWT. For DWT, we used the wavelet package provided
by [48] and employed the 2-band orthogonal near-symmetric
filters with K = 2, L = 6 [49]. 5-level decomposition was
applied in LPT and 4-level decomposition was applied in
DWT. Please note that the approximation level in an N -level
LPT has the same size as that in an (N − 1)-level DWT.
All methods were implemented in Matlab, run on the same
computer, and applied directly to the 3D volumes other than
2D slices. Two free parameters (γ and σ) are in our CS



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. X, NO. X, XXX 2012 7

TABLE I
OBJECTIVE EVALUATION RESULTS ON LPT-BASED FUSION OF SYNTHETIC AND REAL DATA USING QAB/F METRIC.

Grouping CS NG CBSG MG
APX combining CS AVG WA AVG WA CM
DET combining CS CM CM CM CM CM

Verification CS NV WBV NV WBV NV WBV CBV NV WBV CBV NV WBV
Synthetic normal 0.7727 0.6566 0.7022 0.6529 0.6965 0.6532 0.6928 0.5982 0.6492 0.6871 0.5974 0.6609 0.6675
Synthetic lesion 0.7810 0.6221 0.6867 0.6120 0.6729 0.6265 0.6853 0.5697 0.6163 0.6718 0.5683 0.6763 0.6837

Real #1002 0.6662 0.5661 0.6325 0.5656 0.6321 0.5615 0.6181 0.4758 0.5611 0.6177 0.4755 0.6092 0.6149
Real #1037 0.6301 0.5395 0.5941 0.5399 0.5944 0.54 0.5840 0.4601 0.5404 0.5898 0.4605 0.6243 0.6305
Real #1215 0.6803 0.5835 0.6521 0.5833 0.6520 0.5783 0.6313 0.4843 0.5781 0.6311 0.4843 0.6169 0.6233
Real #1344 0.6338 0.5115 0.5874 0.5103 0.5863 0.5117 0.5726 0.4365 0.5105 0.5714 0.4352 0.5748 0.5807
Real #1372 0.6560 0.5627 0.6144 0.5630 0.6147 0.5622 0.6123 0.4765 0.5626 0.6126 0.4771 0.6261 0.6313

TABLE II
OBJECTIVE EVALUATION RESULTS ON DWT-BASED FUSION OF SYNTHETIC AND REAL DATA USING QAB/F METRIC.

Grouping CS NG CBSG MG
APX combining CS AVG WA AVG WA CM
DET combining CS CM CM CM CM CM

Verification CS NV WBV NV WBV NV WBV CBV NV WBV CBV NV WBV
Synthetic normal 0.7217 0.5610 0.6719 0.5481 0.6556 0.5579 0.6405 0.4840 0.5443 0.6248 0.4792 0.6115 0.6220
Synthetic lesion 0.7195 0.5343 0.6540 0.5133 0.6213 0.5480 0.6217 0.4659 0.5246 0.5898 0.4528 0.6106 0.5834

Real #1002 0.6140 0.4950 0.4896 0.4942 0.4887 0.5144 0.5265 0.4110 0.5136 0.5255 0.4110 0.5828 0.5606
Real #1037 0.5578 0.4688 0.4478 0.4690 0.4481 0.4802 0.5180 0.3917 0.4804 0.5183 0.3917 0.5824 0.5513
Real #1215 0.6338 0.5081 0.5314 0.5073 0.5309 0.5285 0.5508 0.4211 0.5278 0.5502 0.4211 0.5944 0.5740
Real #1344 0.5638 0.4347 0.4489 0.4336 0.4475 0.4583 0.5056 0.3765 0.4571 0.5039 0.3761 0.5598 0.5386
Real #1372 0.5908 0.4955 0.4976 0.4959 0.4981 0.5085 0.5722 0.4090 0.5088 0.5730 0.4089 0.5991 0.6010

TABLE III
AVERAGE RANKINGS OF DIFFERENT FUSION RULES ON THE REAL DATA USING QAB/F METRIC.

Grouping CS NG CBSG MG
APX combining CS AVG WA AVG WA CM
DET combining CS CM CM CM CM CM

Verification CS NV WBV NV WBV NV WBV CBV NV WBV CBV NV WBV
LPT-based 1.02 9.58 4.04 8.58 3.2 10.42 6.18 12.88 9.42 5.36 12.12 4.7 3.5
DWT-based 1.58 9.82 9.76 8.98 8.96 7.12 4.84 12.76 6.34 4.16 12.24 1.66 2.78

rule. Taking γ = 10, σ = 1 produced the best results in the
experiments on the synthetic data, and therefore, we also used
these values in the experiments on the real data.

A. Objective Evaluation Metric

The objective metric QAB/F [50] was employed in the
evaluation of the fusion quality. This metric does not require an
ideal composite image as a reference image, which is difficult
to get in practical cases. QAB/F has been proven to correspond
well with subjective tests among different metrics [51] and
widely used in the image fusion community [30], [52]. QAB/F

measures the amount of edge information correctly transferred
from source images to the fused image; and a QAB/F score
is within the range [0, 1], where a higher score indicates better
fusion result.

B. Evaluation Using Synthetic Data

Our CS rule was evaluated on two sets of realistic sim-
ulated 3D MRI brain images from BrainWeb [53], which
are constructed based on real scans. The scans in each set
are spatially registered due to the nature of the simulation.
Each scan has 181× 217× 181 voxels with 12-bit precision,
and the size of each voxel is 1 mm3. One set contains
images of a normal brain, and the other contains images
of a brain with moderate multiple sclerosis lesions. The

objective evaluation results for LPT- and DWT-based fusion
are summarized in Tables I and II (first two rows), respectively.
Our CS rule has the best performance in transferring edge
information on both datasets as indicated by the highest
QAB/F scores. Between LPT and DWT, LPT gives better
performance for these datasets. With the other settings the
same, WBV gives better performance than NV and CBV;
and AVG gives better performance than WA. Therefore, for
brevity, only NG+AVG+CM+WBV, CBSG+AVG+CM+WBV,
and MG+CM+CM+WBV are visually compared with our CS
rule on the lesion dataset in Figure 4. Only one slice along the
axial direction from each volume is displayed and these slices
are normalized to 8-bit precision for viewing. Please note that
when viewed using a medical image visualization software
(e.g., VolView), the voxel values are usually not normalized,
but instead, the display range of the voxel values and the image
contrast can be interactively adjusted via the window/level
setting. Compared to other fusion rules, our CS rule not only
correctly combined information with high consistency with the
source images, but also provided good local contrasts (e.g.,
between ventricles, grey matter and white matter). As shown
in the insets below each slice (refer to the regions pointed
by the white arrows), our CS rule successfully eliminated the
blocking artifacts shown in MG when coupled with LPT and
the aliasing artifacts in NV, CBSG, and MG when coupled
with DWT.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 4. Comparison of different fusion rules using synthetic MRI brain im-
ages. Our CS rule provides better reproduction of local details. (a) T1W MRI
image; (b) T2W MRI image; (c) LPT+CS; (d) LPT+NG+AVG+CM+WBV; (e)
LPT+CBSG+AVG+CM+WBV; (f) LPT+MG+CM+CM+WBV; (g) DWT+CS;
(h) DWT+NG+AVG+CM+WBV; (i) DWT+CBSG+AVG+CM+WBV; (j)
DWT+MG+CM+CM+WBV.

C. Evaluation Using Real Data

We also tested our method on fifty real datasets of normal
brains randomly selected from the NIH Pediatric MRI Data
Repository [54]. Each dataset contains stereotaxically regis-
tered MRI scans of the same subject. We used the T1W and
T2W scans in each dataset to evaluate the proposed fusion
method. Each scan has 197 × 233 × 189 voxels with 32-
bit precision, and the size of each voxel is 1 mm3. The
objective evaluation results on five representative datasets for
LPT- and DWT-based fusion are summarized in Tables I and II
(last five rows), respectively. According to the QAB/F scores,
the fusion rules are ranked from 1 (best) to 13 (worst) for
each dataset. The average rankings on all the 50 datasets are
presented in Table III. Our CS rule has the best performance
in transferring edge information on the average. With the other
settings the same, AVG and WA have very close performance
for both LPT and DWT; WBV has better performance than
NV and CBV for LPT; NV and WBV have similar perfor-
mance for DWT+NG; WBV has better performance than NV
and CBV for DWT+CBSG; and NV has better performance

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 5. Comparison of different fusion rules using real dataset
#1002. Our CS rule provides better reproduction of local details with
better consistencies at region boundaries. (a) T1W MRI image; (b)
T2W MRI image; (c) LPT+CS; (d) LPT+NG+AVG+CM+WBV; (e)
LPT+CBSG+AVG+CM+WBV; (f) LPT+MG+CM+CM+WBV; (g) DWT+CS;
(h) DWT+NG+AVG+CM+WBV; (i) DWT+CBSG+AVG+CM+WBV; (j)
DWT+MG+CM+CM+NV.

than WBV for DWT+MG. The results on a representative
case (dataset #1002) are visually compared in Figure 5. For
brevity, only NG+AVG+CM+WBV, CBSG+AVG+CM+WBV,
LPT+MG+CM+CM+WBV, and DWT+MG+CM+CM+NV
are visually compared with our CS rule. The displayed slices
are normalized to 8-bit precision for viewing. As shown in
the insets (refer to the cerebellum and the regions around
the fourth ventricle as indicated by the white arrow), our CS
rule produced better consistencies at region boundaries and
gave better local details and contrasts. It can be seen from
Table III that MG+CM+CM+NV has performance close to
our CS rule in DWT-based fusion on the average, and MG
has slightly better performance on some datasets as shown
in Tables I and II. However, this interpretation is based on
the QAB/F scores, which only considers edge information.
Without correctly transferred neighborhood information, the
fusion results (even with higher QAB/F scores) tend to contain
artifacts. These artifacts will impair further analysis either by
a radiologist or by image processing software. Our CS rule
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(a) (b) (c) (d) (e)

Fig. 6. Comparison of different fusion rules using real dataset #1372. Our CS rule provides better neighborhood consistencies. The artifacts produced by the
MG rule in the white matter do not appear in the result by our CS rule. (a) T1W MRI image; (b) T2W MRI image; (c) DWT+CS; (d) DWT+MG+CM+CM+NV;
(e) DWT+MG+CM+CM+WBV.

effectively minimizes the occurrence of such artifacts. An
example is given in Figure 6. Our CS rule produced better
neighborhood consistencies in the white matter.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a cross-scale fusion rule. Our
fusion rule selects an optimal set of coefficients for each
decomposition level, and guarantees intra- and inter-scale
consistencies. Experiments on volumetric medical image fu-
sion demonstrated the effectiveness of our cross-scale fusion
rule, which produced fused images with higher quality than
existing rules. An efficient color fusion scheme effectively
utilizing monochrome fusion result was also proposed. In
future work, we will extend our cross-scale rule to fusion of
images acquired in other modalities, e.g., CT and diffusion
tensor MRI. We will also explore the possibility of combining
our fusion rule with other MSD schemes.
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